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Introduction

The practical successes of deep learning in various fields such
as image processing, biomedicine, and language translation still
outpace out theoretical understanding. Current approaches for
iImproving theoretical and practical comprehension focus on inter-
rogating networks with input data (e.g. feature visualizations for
CNNs'"# or descriptive analyses based on information theory?).

In this work, we propose neural persistence, a complexity meas-
ure for neural network architectures based on topological data
analysis that can be efficiently computed. To demonstrate the
usefulness of our approach, we show that neural persistence
reflects best practices developed in the deep learning community
such as dropout and batch normalization. Moreover, we derive a
neural persistence-based stopping criterion that shortens the
training process while achieving comparable accuracies as early
stopping based on validation loss without the usage of a valida-
tion data set.

Background

Persistent Homology

The central object in algebraic topology is a simplicial complex
K, e.g. an undirected weighted graph. Persistent homology cap-
tures topological features of K on different scales by defining a
filtration on it. A filtration is a nested sequence of simplicial com-
plexes (e.g. subgraphs K ) representing the "growth™ of K:

=Ko CK;C---CKp1 €K, =K

During this growth process, topological features can be created
(@ new connected component emerges) and destroyed

(two connected components merge into one). The tuples of crea-
tion, and destruction times are captured as points (ec,e d) In a per-
sistence diagram D. The persistence of a topological feature is
then defined as

pers(€c, €q) = |€q — €|

Figure 1 illustrates the filtration process of a 2-dimensional point
cloud.
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E = {(u,v)|dist(u,v) < ez} E = {(u,v)|dist(u,v) < es} E = {(u,v)|dist(u,v) < €y} €

Fig. 1.  The filtration process of a 2-dimensional point cloud and its persistence diagram. At
each filtration step, the radius at which points can merge increases, leading to a decreasing
number of connected components (e.g. 11 ate and 1 at ¢).

Method Overview

Fig. 2. lllustrating the neural persistence calculation of a network. Colours indicate connected
components per layer. In contrast to figure 1, we reverse the filtration process by starting it with a

threshold of 1 and decrease it during the filtration. As the threshold decreases, connectivity increases.

Creation and destruction thresholds are collected in one persistence diagram per layer.

Neural persistence (NP) captures neural network dynamics of the
training process by exploiting both network structure and weight
information using persistent homology.

We define NP on the k™ layer of a stratified graph (e.g. a feedfor-
ward neural network) G=(V, E) satisfying V=V 1 V U ..., such that
fueV,veV and(u v) € E, wehave j =i+ 1. Given k € N,
the k™ layer of G is the unique subgraph

Gy = (Vk || Vk;_|_1, Er = EN {Vk X Vk_|_1})

To simplify the comparison of different networks, we transform all
network weights w of each training step such that w’ € [0,1] and sort
them in non-ascending order. This permits us to define the filtration
for the k™ layer of a neural network as:

GO = (Vi U Viy1, {(u,0) | (w,0) € Ex A (u,0) > w)})

Our complexity measure is defined as the p-norm of the persistence
diagram D _that results from this filtration:

1

P(Gi) = [Dull, == (Y. pers(e,ay)”.

(C,d)EDk

which (for p = 2) captures the Euclidean distance of points in Dy, to the diagonal.

The p-norm is known to be a stable summary* of topological fea-
tures in a persistence diagram.

The calculation of NP is highly efficient: The filtration amounts to
sorting all n weights of a network, which has computational com-
plexity of O(n log n). Calculating persistent homology of this filtra-
tion can be realized using an algorithm based on union-find data
structures® that exhibit a computational complexity of

O(n - o (n)), where «f(:) refers to the extremely slow-growing inverse
of the Ackermann function®.
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c: Accuracy and epoch differences

Fig. 2. Neural persistence values of trained perceptrons (green), diverging ones ( ), random | o NP o Validation loss

Gaussian matrices (red), and random uniform matrices (black). We performed 100 runs per category; Epoch difference 20 7% 20
80

dots indicate neural persistence while crosses indicate the predicted lower bound according to Theo- 16 o
rem 2. The bounds according to Theorem 1 are shown as dashed lines.

a: Fashion-MNIST 40

Data set Barycentre Final test accuracy 8 20 8

Fashion-MNIST (—0.53, —0.08) 86.72 + 0.43 4 0 4

MNIST (4+0.17, —0.06) 96.16 + 0.24 0 0
CIFAR-10 (—1.33,—-1.13) 52.19 4 3.40 0 4 8 12 16 20 24 0 4 8 12 16 20 24
IMDB (—1.68, 4+0.07) 87.35 + 0.03 g g

To compare networks with different architectures (e.g. number and
sizes of layers), bounds can be derived that allow us to normalize
NP. Theorem 1 shows the upper bound which is used to define
mean normalized NP, the measure that is used in our experiments:

b: Summary d: Number of triggers

Early Stopping

Neural persistence can be used to evaluate the state of a training
procedure and we evaluated its effectiveness as a stopping crite-
rion by comparing it to validation loss across multiple comparable
training runs and several patience g and burn-in b parameters.
On average, neural persistence stops earlier with slightly
worse accuracy (Table b). Moreover, the criterion stops reliably
for a wide range of early stopping parameters.

The major benefit, however, is that no validation data is neces-
sary to prevent overfitting.

Theorem 1. Let ¢, : E, — W' denote the function that assigns each edge of Gy,
a transformed weight. The neural persistence NP(Gy) of the k™ layer satisfies

0 < NP(G) < (maxou(e) — min 9u)) (Ve x V| = DF = NP(G),

where |V, x Vii1| denotes the cardinality of the vertex set, i.e. the number of
neurons in the layer.

Mean normalized NP of a full neural network is calculated by aver-
aging normalized NP over all layers allowing us to side-step the

Neural Persistence & Deep Learning Best Practices
problem of different layers having different scales:

We observe that networks trained with dropout yield higher nor-
malized neural persistence compared to a regularly trained net-
work. This can be explained because individual parts of the net-
work are trained independently, resulting in a higher degree of
per-layer redundancy.

Definition 1 (Mean normalized neural persistence).

NP(Gy) == NP(Gy) - NP(G{)™*

[—1
NP(G) :=1/1- Y NP(Gy)
k=0

While Theorem 1 gives a lower and upper bound in a general set-
ting, it is possible to obtain empirical bounds when we consider the
tuples that result from the computation of a persistence diagram. 048 050 052 054 056 058  0.60
Recall that our filtration ensures that the persistence diagram of a Mean normalized nevral persistence
layer contains tuples of the form (1, w), with w.€ [0,1] being a trans-
formed weight. Exploiting this structure permits us to obtain bounds
that could be used prior to calculating the actual neural persistence
value in order to make the implementation more efficient.
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) are

h = " and =
where Wiax = (Wm—1, Wm—2, -+, Wm—n)  and Wyin = (Wo, W2, ..., Wp_1
the vectors containing the n largest and n smallest weights, respectively.




